A portable cell-based impedance sensor for toxicity testing of drinking water.
نویسندگان
چکیده
A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-substrate Impedance Sensing (ECIS) technology. Long-term maintenance of cells on the biochips is made possible by using a compact, self-contained disposable media delivery system. The toxicity sensor monitors changes in impedance of cell monolayers on the biochips after the introduction of water samples. The fluidic biochip includes an ECIS electronic layer and a polycarbonate channel layer, which together reduce initial impedance disturbances seen in commercially available open well ECIS chips caused by the mechanics of pipetting while maintaining the ability of the cells to respond to toxicants. A curve discrimination program was developed that compares impedance values over time between the control and treatment channels on the fluidic biochip and determines if they are significantly different. Toxicant responses of bovine pulmonary artery endothelial cells grown on fluidic biochips are similar to cells on commercially-available open well chips, and these cells can be maintained in the toxicity sensor device for at least nine days using an automated media delivery system. Longer-term cell storage is possible; bovine lung microvessel endothelial cells survive for up to four months on the fluidic biochips and remain responsive to a model toxicant. This is the first demonstration of a portable bench top system capable of both supporting cell health over extended periods of time and obtaining impedance measurements from endothelial cell monolayers after toxicant exposure.
منابع مشابه
Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.
The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses r...
متن کاملPreparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity...
متن کاملCellphone based Portable Bacteria Pre-Concentrating microfluidic Sensor and Impedance Sensing System
Portable low-cost sensors and sensing systems for the identification and quantitative measurement of bacteria in field water are critical in preventing drinking water from being contaminated by bacteria. In this article, we reported the design, fabrication and testing of a low-cost, miniaturized and sensitive bacteria sensor based on electrical impedance spectroscopy method using a smartphone a...
متن کاملImproved cell sensitivity and longevity in a rapid impedance-based toxicity sensor.
A number of toxicity sensors for testing field water using a range of eukaryotic cell types have been proposed, but it has been difficult to identify sensors with both appropriate sensitivity to toxicants and the potential for long-term viability. Assessment of bovine pulmonary artery endothelial cell (BPAEC) monolayer electrical impedance with electric cell-substrate impedance sensing (ECIS) s...
متن کاملLong-term storage and impedance-based water toxicity testing capabilities of fluidic biochips seeded with RTgill-W1 cells.
Rainbow trout gill epithelial cells (RTgill-W1) are used in a cell-based biosensor that can respond within one hour to toxic chemicals that have the potential to contaminate drinking water supplies. RTgill-W1 cells seeded on enclosed fluidic biochips and monitored using electric cell-substrate impedance sensing (ECIS) technology responded to 18 out of the 18 toxic chemicals tested within one ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 9 15 شماره
صفحات -
تاریخ انتشار 2009